翻訳と辞書
Words near each other
・ Stidia
・ Stidsvig
・ Stidzaeras
・ Stidzaeras evora
・ Stidzaeras strigifera
・ STIE Trianandra
・ Stiebel Eltron
・ Stieber Twins
・ Stieda body
・ Stiefel
・ Stiefel Laboratories
・ Stiefel manifold
・ Stiefelgeiss
・ Stiefelhöhe
・ Stiefelmeyer's
Stiefel–Whitney class
・ Stiefenhofen
・ Stieff Silver
・ Stieff Silver Company Factory
・ Stiefografie
・ Stieg Hedlund
・ Stieg Larsson
・ Stieg Persson
・ Stieg Trenter
・ Stiege
・ Stiegel-Coleman House
・ Stieger Lake
・ Stiegler
・ Stieglitz
・ Stieglitz (surname)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stiefel–Whitney class : ウィキペディア英語版
Stiefel–Whitney class
In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to ''n'', where ''n'' is the dimension of the vector space fiber of the vector bundle. If the Stiefel–Whitney class of index ''i'' is nonzero, then there cannot exist (''n''−''i''+1) everywhere linearly independent sections of the vector bundle. A nonzero ''n''th Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, ''S''1×R is zero.
The Stiefel–Whitney class was named for Eduard Stiefel and Hassler Whitney and is an example of a Z/2Z-characteristic class associated to real vector bundles.
In algebraic geometry one can also define analogous Stiefel–Whitney classes for vector bundles with a non-degenerate quadratic form, taking values in etale cohomology groups or in Milnor K-theory. As a special case one can define Stiefel–Whitney classes for quadratic forms over fields, the first two cases being the discriminant and the Hasse–Witt invariant .
==Introduction==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stiefel–Whitney class」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.